ТЕПЛИЦЫ.ру

ТЕПЛИЦЫ.ру - промышленные теплицы, тепличные технологии

Теплицы зимние промышленные стеклянные, конструкции Venlo (Венло)



Организации

Публикации
Люди
Экология
Экономика
Удобрения
Защита растений
Семена и селекция
Тепличные хозяйства
Строительство теплиц
Тепличные технологии
Тепличное оборудование

Журналы
Форумы
Аналитика рынков
Тендеры, закупки
Бизнес-планы




Публикации / Тепличные технологии / Светокультура растений в теплицах

   Светокультура растений в теплицах

Светокультура растений в теплицах

Тихомиров А. А., Шарупич В. П., Лисовский Г. М.

Энергия света используется растениями для фотосинтеза и регуляции своего развития (прорастание, цветение, плодоношение). При этом на регуляцию требуется в 100-1000 раз меньше энергии, чем на фотосинтез.

Спектральные диапазоны света имеют следующие физиологические значения:

  • 280-320 нм: оказывает вредное воздействие;
  • 320-400 нм: регуляторная роль, необходимо несколько процентов;
  • 400-500 нм («синий»): необходим для фотосинтеза и регуляции;
  • 500-600 нм («зеленый»): полезен для фотосинтеза оптически плотных листьев, листьев нижних ярусов, густых посевов растений благодаря высокой проникающей способности;
  • 600-700 нм («красный»): ярко выраженное действие на фотосинтез, развитие и регуляцию процессов;
  • 700-750 нм («дальний красный»): ярко выраженное регуляторное действие, достаточно несколько процентов в общем спектре.
  • 1200-1600 нм: поглощается внутри- и межклеточной водой, увеличивает скорость тепловых биохимических реакций.

Соотношение ИК и ФАР — 50-85% в зависимости от угла падения солнечных лучей и состояния атмосферы.

Интенсивность света влияет на скорость фотосинтеза.

При низкой интенсивности света преобладают процессы дыхания растений (энергия для жизнедеятельности черпается за счет распада ранее синтезированных веществ). При повышении интесивности света линейно увеличивается фотосинтез. При дальнейшем росте нтенсивности фотосинтез увеличивается медленнее, потом не увеличиавется, наступает «фаза насыщения». Если продолжать увеличивать интенсивность света, фотосинтез начинает снижаться.

При низкой интенсивности света растения получаются вытянутые. У корнеплодных (например, редиса) корнеплоды образуются плохо, растения формируют цветоносные стебли. У томатов и огурца цветы опадают, плоды невелики, вкусовые качества низкие.

Интенсивный свет позволяет увеличить урожай, получать крупные плоды высокого качества, значительно снизить сроки вегетации.

Интенсивный свет позволяет скоординировать фотосинтез, рост и развитие растений.

В то же время для выращивания зелени сильный свет вреден, так как рост листовой поверхности замедляется, качества листьев снижается, они желтеют и становятся жесткими.

Интенсивность и фотопериод.

Согласно разработкам Института Гипронисельпром оптимальная норма облученности в теплице для выращивании рассады — 40 Вт/м2 ФАР с фотопериодом 14 часов, для выращивания на продукцию — 100 Вт/м2 с фотопериодом 16 часов.

Средняя суточная интенсивность естественного света — 100 Вт/м2.

Оптические свойства растений и фитоценозов.

Основные пигменты листьев — хлорофиллы a и b, поглощают свет синего и красного диапазонов, каротиноиды поглощают свет синего диапазона. Обобщение данных поглощения света листьями разных растений позволяет рассчитать спектральную кривую поглощения «среднего» зеленого листа.

Поглощение в синей и красной области спектра составляет 80-90% излучения ФАР. Зеленые лучи хорошо проникают к листьям нижних ярусов, куда синие и красные лучи почти не проникают.

В ИК диапазоне полоса поглощения 1200-1600 нм связана с водой, содержание которой в клетках листьев может достигать 90%. Начиная с 2000 нм начинается неселективное тепловое поглощение (Шульгин, 1973).

Существуют предельные значения концентрации поглощающих пигментов, толщины листьев, содержания воды, при которых поглощение света средним листом в области ФАР ограничивается величиной 80-85%.

При среднесуточной интенсивности света 100 Вт/м2 ФАР соотношение синих, зеленых и красный лучей в спектре не имеет особого значения. При высокой интенсивности ФАР синие лучи продолжают хорошо усваиваться растениями, тогда как интенсивные красные могут привести к пожелтению листьев и даже гибели растения.

Фитоценоз как фотосинтезирующая система отличается от среднего листа. К оптическим характеристикам света прибавляются такие как направление излучения (вертикальное, боковое), степень рассеянности (диффузности света).

Листья растений так располагаются в пространстве, чтобы при нехватке света максимально собирать рассеянный свет, а при избытке уменьшать световое поглощение. Например, у ценозов пшеницы верхние листья, получающие много света, имеют вертикальную ориентацию, а листья средних и нижних ярусов, где света мало, ориентируются по горизонтали.

Растения с вертикальной ориентацией листьев имеют более высокие показатели продуктивности при боковом освещении, чем при облучении сверху (Шульгин, 1973; Леман, 1976).

Интересно, что интенсивный свет, падающий на одну сторону листа, производит такое же действие на фотосинтез, как и половинные интенсивности света, падающего на обе стороны листа. Это означает, что для ценоза важен также свет, рассеянный листьями и отраженный от листьев.

Выигрыш в урожае, полученный в работе Лемана (1976), указывает, что в реальных ценозах при одинаковых мощностях лучистых потоков боковое освещение более эффективно, чем освещение сверху, поскольку оно более объемно и лучше распределяется по ассимилирующей поверхности ценоза.

Диффузный свет более эффективен, чем прямой, т.к. лучше распределяется в ценозе.

Интенсивность вертикального света резко падает после прохождения света через лист. Верхний лист получет 100% света, следующий за ним 20%, третий лист — только 4%. Обеднение спектрального состава света еще более существенно.

При искусственном освещении целесообразно располагать источники излучения так, чтобы излучение падало на ценозы под определенными углами.

Фоторегуляция.

Процессы фоторегуляции запускаются фоторецепторами. Фитохром — рецептор красного света, существует в двух состояниях — активном Ф730 и неактивном Ф660. Соотношение Ф730/Ф660 на дневном свете 1,05-1,25, в сумерках 0,65-1,15, в тени растений 0,05-1,15 (Smith, 1994).

Каротин и ксантофилл — рецептор синего света.

Для фоторегуляции требуется весьма незначительное количество энергии синих и красных лучей.

Световое питание растений (субстратная роль света)

Интенсивность субстратного света на 1-2 порядка выше, чем фоторегуляторного. Большое значение имеет свет зеленого (500-600 нм) диапазона.

Оценка эффективности излучения

Энергетическая эффективность фитоценоза (Нечипорович, 1956) или КПД фитоценоза (Тооминг, 1977) позволяют соотнести количество света на площадь фитоценоза и полученную биомассу растений.

Рис. 1. Спектрограмма солнечного света в видимом диапазоне 400-750 нм

Считается, что белый солнечный свет является лучшим освещением, поскольку филогенетическое развитие растений происходило на нем, растения лучше к нему приспособлены. Чем ближе спектральный состав излучателей к естественному спектру, тем выше эффективность фитоценоза.

Однако кроме солнечного света для очень многих растений существуют уникальные условия освещенности, температуры, плодородности почвы: на высокогорье, под пологом леса, в тропиках и на севере, на черноземе и в пустыне. Свет существенно отличается как по интенсивности, так и по спектральному составу. Например, в горных районах в спектре падающего света присутствует значительная доля сине-фиолетовых лучей, влажная равнина освещается рассеянным белым светом, под водой опять преобладают синие лучи.

Универсальность и эффективность часто не совпадают, поэтому белый свет не может обеспечить максимальную продуктивность любых растений.

И. И. Свентицкий (1982) предложил метод определения универсального спектра ФАР, наиболее благоприятный для фотосинтеза абсолютного большинства зеленых растений. На графике показан универсальный спектральный состав света с интенсивностью 10-30 Вт/м2, вызывающий максимальный фотосинтез в зеленом листе.

Рис. 2. Усредненная кривая фотосинтеза зеленого листа (McCree, 1972)

Спектральная чувствительность

Известно, что спектральная эффективность действия излучения ФАР зависит от ее интенсивности. Однако при росте интенсивности до 100-150 Вт/м2 и выше при неизменном спектре излучателя усиливается действие синих лучей и ослабляется действие красных.

Исследования на ценозах показывают, что у растений разных видов различны требования к оптимальному сочетанию спектральных и энергетических характеристик светового режима. Критерием оценки оптимального сочетания стала реакция растений на долю красного света в спектре. Это позволило разделить растения на три групы. Растения первой группы, например, огурец, могут погибнуть при длительном воздействии интенсивного красного света. Растения второй грукппы, напрмер, томат, дают максимальный урожай. Растениям третьей группы нужны лучи белого света (Тихомиров и др., 1991).

Влияние ИК радиации (ИКР)

Каким должно быть соотношение ФАР/ИКР для обеспечения максимальной продуктивности растений. В пределах 20-50% от общего излучения ИКР не вляияет существенно на урожай, но сильно изменяет сроки вегетации.50-60% ИКР повышают выход урожая при минимальных сроках вегетацуии. Превышение доли ИКР выше 60% снижает урожайность, а снижение ниже 20% сильно удлиняет сроки вегетации.

С ростом уровня облученности ФАР рекомендуется снижать долю ИКР.

Спектральный состав ИКР

Ближнее ИК излучение (750-1200 нм) слабо поглощается водой и тканями листа. Излучение 1200-1600 нм сильно поглощается водой, а следовательно и тканями листа.

Измерение светового потока

Люкс=1 Вт на длине волны 550 нм. Большим недостатком люксов является их привязка к зеленому диапазону 550 нм, в меньшим физиологическим значением. Необходимы поправочные коэффициенты.

Рис. 3. Относительная спектральная эффективность фотосинтеза зеленого листа (Живописцев, Косицин, 1990)

Растения, как живой организм, приспосабливаются к условиям среды, и их оптические свойства могут со временем меняться.

В условиях светокультуры растения могут расти как в направленном, так и в диффузном световом потоке. Диффузное излучение называют объемным (например, свет при равномерном облачном небе или свет через матовое стекло). Для получения диффузного света используют переизлучающую или рассеивающую поверхность.

У растений чувствительны к свету не только листья, но и стебли. Листья верхних ярусов получают прямой свет, а листья внутри ценоза находятся частично или полностью в тени и получают менее интенсивное диффузное облучение с измененным спектральным составом (меньше синих и красных лучей и больше зеленых).

Более высокая эффективность рассеянного света по сравнению с направленным требует устанавливать в теплицах с искусственным освещением специальных рассеивающих отражателей и экраном для распределения света по всему ценозу. В парниках для этого используют диффузные пленки со светорассеивающими добавками. Люминофоры также служат этой цели.

Издательство СО РАН, Новосибирск, 2000 г.












© Все права на материалы, размещенные на сайте, принадлежат их владельцам.
Нас считают:


ТЕПЛИЦЫ.ру

Информационная поддержка:
Ассоциация «ТЕПЛИЦЫ РОССИИ»

Техническая поддержка:
ООО НПФ «ФИТО»

© Теплицы.ру, при использовании материалов с сайта, обязательна прямая ссылка на сервер www.greenhouses.ru, а также указание имен авторов опубликованного материала!
Ваши предложения направляйте на